
Week 5 - Wednesday

 What did we talk about last time?
 Exam 1!
 Before that:
 Review

 Before that:
 Linked lists
 Implementing stacks with linked lists
 Implementing queues with linked lists

 Linked lists can be made circular such that the last node
points back at the head node

 This organization is good for situations in which we want to
cycle through all of the nodes in the list repeatedly

tail

23 47 58

 Insert at front (or back)
 Θ(1)

 Delete at front
 Θ(1)
 Delete at back costs Θ(n) unless we used doubly linked lists

 Search
 Θ(n)

 We can design linked lists with multiple pointers in some
nodes

 We want ½ of the nodes to have 1 pointer, ¼ of the nodes to
have 2 pointers, 1/8 of the nodes to have 3 pointers…

head

14
5

3 29

28
41

58

X
X
X

 If ordered, search is
 Θ(log n)

 Go to index is
 Θ(log n)

 Insert at end
 Θ(log n)

 Delete
 Totally insane, at least Θ(n)

 Trees end up being a better alternative

 Maybe we want to make items that are used frequently easy
to get at

 Several different approaches, mostly based on finding items
repeatedly:
 Move to front: After finding an item, put it in the front
 Transpose: After finding an item, move it up by one
 Count: Keep the list ordered by how often you get a particular item

(requires a counter in each node)
 Ordering: Sort the list according to some feature of the data

 Defining something in terms of itself
 To be useful, the definition must be

based on progressively simpler
definitions of the thing being defined

 It is possible to define something recursively from the bottom
up

 We start with a simple pattern and repeat the pattern, using a
copy of the pattern for each part of the starting pattern

Explicitly:
 n! = (n)(n – 1)(n – 2) … (2)(1)
Recursively:
 n! = (n)(n – 1)!
 1! = 1

 6! = 6 ∙ 5!
 5! = 5 ∙ 4!

▪ 4! = 4 ∙ 3!
▪ 3! = 3 ∙ 2!
 2! = 2 ∙ 1!
 1! = 1

 6! = 6 ∙ 5 ∙ 4 ∙ 3 ∙ 2 ∙ 1 = 720

 PHP
 PHP: Hypertext Processor
▪ (PHP: Hypertext Processor): Hypertext Processor
▪ …

 XINU
 XINU Is Not Unix
▪ (XINU Is Not Unix) Is Not Unix
▪ …

Two parts:
 Base case(s)
 Tells recursion when to stop
 For factorial, n = 1 or n = 0 are examples of base cases

 Recursive case(s)
 Allows recursion to progress
 "Leap of faith"
 For factorial, n > 1 is the recursive case

 Top down approach
 Don't try to solve the whole problem
 Deal with the next step in the problem
 Then make the "leap of faith"
 Assume that you can solve any smaller part of the problem

ProblemProblemProblemProblem

 Problem: You want to walk to the door
 Base case (if you reach the door):
 You’re done!

 Recursive case (if you aren’t there yet):
 Take a step toward the door

Problem

 Base case (n ≤ 1):
 1! = 0! = 1

 Recursive case (n > 1):
 n! = n(n – 1)!

public static long factorial(int n) {

if(n <= 1){
return 1;

} else {
return n*factorial(n – 1);

}

}

Base Case

Recursive
Case

 Given an integer, count the number of zeroes in its
representation

 Example:
 13007804
 3 zeroes

 Base cases (number less than 10):
 1 zero if it is 0
 No zeroes otherwise

 Recursive cases (number greater than or equal to 10):
 One more zero than the rest of the number if the last digit is 0
 The same number of zeroes as the rest of the number if the last digit

is not 0

public static int zeroes(int n) {

if (n == 0) {
return 1;

} else if (n < 10) {
return 0;

} else if (n % 10 == 0) {
return 1 + zeroes(n / 10);

} else {
return zeroes(n / 10);

}

}

Base Cases

Recursive
Cases

 Given an array of integers in (ascending) sorted order, find the
index of the one you are looking for

 Useful problem with practical applications
 Recursion makes an efficient solution obvious
 Play the High-Low game

 Base cases:
 The number isn’t in the range you are looking at. Return -1.
 The number in the middle of the range is the one you are looking for.

Return its index.
 Recursion cases:
 The number in the middle of the range is too low. Look in the range

above it.
 The number in middle of the range is too high. Look in the range

below it.

public static int search(int[] array,
int n, int start, int end) {
int midpoint = (start + end)/2;
if (start >= end) {

return -1;
} else if (array[midpoint] == n) {

return midpoint;
} else if (array[midpoint] < n) {

return search(array, n,
midpoint + 1, end);

} else {
return search(array, n, start,

midpoint);
}

}

Base
Cases

Recursive
Cases

 Each recursive call splits the range in half
 In the worst case, we will have to keep splitting the range in

half until we have a single number left
 We want to find the number of times that we have to multiply

n by ½ before we get 1
 n(½)x = 1
 n = 2x

 x = log2(n)

 How does it actually work inside a computer?
 Is there a problem with calling a method inside the same

method?
 How does the computer keep track of which method is which?

 As you know, a stack is a FILO data structure used to store and
retrieve items in a particular order

 Just like a stack of blocks:

Push Push Pop

 In the same way, the local variables for each function are
stored on the stack

 When a function is called, a copy of that function is pushed
onto the stack

 When a function returns, that copy of the function pops off
the stack

main main

solve

Call

main

solve

factorial

Call

main

solve

Return

 Each copy of factorial has a value of n stored as a local
variable

 For 6! :

6*factorial(5)

5*factorial(4)

4*factorial(3)

3*factorial(2)

2*factorial(1)

1

x = factorial(6);
factorial(6)

factorial(5)

factorial(4)

factorial(3)

factorial(2)

factorial(1)

720

120

24

6

2

1

 Recursion is a great technique
 One of its strengths is in writing concise code to solve a

problem
 Some recursive solutions are very efficient
 Some are not
 It pays to be aware of both

 Find the sum of the integers 1 through n

 Example: n = 8
 sum(8) = 8 + 7 + 6 + 5 + 4 + 3 + 2 + 1
 sum(8) = 36

 Base case (n = 1):



 Recursive case (n > 1):



∑
=

=
1

1

1
i

i

∑∑
−

==

+=
1

11

n

i

n

i

ini

public static int sum(int n) {

if (n == 1) {
return 1;

} else {
return n + sum(n – 1);

}

}

Base Case

Recursive
Case

 Recursive summing takes linear time (summing n takes n
function calls)

 Is there another way to find this sum?
 Closed form equation



 Constant time!
 Remember the story of young Gauss

∑
=

+
=

n

i

nn
i

1 2
)1(

 The sequence: 1 1 2 3 5 8 13 21 34 55…
 Studied by Leonardo of Pisa to model the growth of rabbit populations

 Find the nth term of the Fibonacci sequence
 Simple approach of summing two previous terms together
 Example: n = 7
 1 1 2 3 5 8 13
1 2 3 4 5 6 7

 More on recursive running time
 Symbol tables

 Read section 3.1
 Keep working on Project 2
 Office hours from 4-5 today are cancelled due to a meeting

	COMP 2100
	Last time
	Questions?
	Project 2
	Other kinds of linked lists
	Circular linked lists
	Performance of a circular linked list
	Skip lists
	Performance of skip lists
	Self organizing lists
	Recursion
	What is recursion?
	Bottom up
	Top down
	Examples in acronyms
	Useful recursion
	Solving Problems with Recursion
	Approach for problems
	Walking to the door
	Implementing factorial
	Code for factorial
	Count the zeroes
	Recursion for zeroes
	Code for zeroes
	Searching in a sorted array
	Recursion for binary search
	Code for binary search
	Time for binary search
	How Does Recursion Work Inside The Computer?
	All this math is great, but…
	The stack
	Stack for functions
	Example with factorial
	Issues of Efficiency
	When to use recursion?
	Summation
	Recursion for Summing
	Code for summing
	Why not recursion?
	Fibonacci
	Fibonacci problem
	Upcoming
	Next time…
	Reminders

