
Week 5 - Wednesday



 What did we talk about last time?
 Exam 1!
 Before that:
 Review

 Before that:
 Linked lists
 Implementing stacks with linked lists
 Implementing queues with linked lists









 Linked lists can be made circular such that the last node 
points back at the head node

 This organization is good for situations in which we want to 
cycle through all of the nodes in the list repeatedly
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 Insert at front (or back)
 Θ(1)

 Delete at front 
 Θ(1)
 Delete at back costs Θ(n) unless we used doubly linked lists

 Search
 Θ(n)



 We can design linked lists with multiple pointers in some 
nodes

 We want ½ of the nodes to have 1 pointer, ¼ of the nodes to 
have 2 pointers, 1/8 of the nodes to have 3 pointers…
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 If ordered, search is
 Θ(log n)

 Go to index is
 Θ(log n)

 Insert at end
 Θ(log n)

 Delete
 Totally insane, at least Θ(n)

 Trees end up being a better alternative



 Maybe we want to make items that are used frequently easy 
to get at

 Several different approaches, mostly based on finding items 
repeatedly:
 Move to front: After finding an item, put it in the front
 Transpose: After finding an item, move it up by one
 Count: Keep the list ordered by how often you get a particular item 

(requires a counter in each node)
 Ordering: Sort the list according to some feature of the data





 Defining something in terms of itself
 To be useful, the definition must be 

based on progressively simpler 
definitions of the thing being defined



 It is possible to define something recursively from the bottom 
up

 We start with a simple pattern and repeat the pattern, using a 
copy of the pattern for each part of the starting pattern



Explicitly:
 n! = (n)(n – 1)(n – 2) … (2)(1)
Recursively:
 n! = (n)(n – 1)!
 1! = 1

 6! = 6 ∙ 5!
 5! = 5 ∙ 4!

▪ 4! = 4 ∙ 3!
▪ 3! = 3 ∙ 2!
 2! = 2 ∙ 1!
 1! = 1

 6! = 6 ∙ 5 ∙ 4 ∙ 3 ∙ 2 ∙ 1 = 720



 PHP
 PHP: Hypertext Processor
▪ (PHP: Hypertext Processor): Hypertext Processor
▪ …

 XINU
 XINU Is Not Unix
▪ (XINU Is Not Unix) Is Not Unix
▪ …



Two parts:
 Base case(s)
 Tells recursion when to stop
 For factorial, n = 1 or n = 0 are examples of base cases

 Recursive case(s)
 Allows recursion to progress
 "Leap of faith"
 For factorial, n > 1 is the recursive case





 Top down approach
 Don't try to solve the whole problem
 Deal with the next step in the problem
 Then make the "leap of faith"
 Assume that you can solve any smaller part of the problem



ProblemProblemProblemProblem

 Problem:  You want to walk to the door
 Base case (if you reach the door):
 You’re done!

 Recursive case (if you aren’t there yet):
 Take a step toward the door

Problem



 Base case (n ≤ 1):
 1! = 0! = 1

 Recursive case (n > 1):
 n! = n(n – 1)! 



public static long factorial(int n) {

if( n <= 1 ){
return 1;

} else {
return n*factorial( n – 1 );

}

}

Base Case

Recursive
Case



 Given an integer, count the number of zeroes in its 
representation

 Example: 
 13007804
 3 zeroes



 Base cases (number less than 10):
 1 zero if it is 0
 No zeroes otherwise

 Recursive cases (number greater than or equal to 10):
 One more zero than the rest of the number if the last digit is 0
 The same number of zeroes as the rest of the number if the last digit 

is not 0



public static int zeroes(int n) {

if (n == 0) {
return 1;

} else if (n < 10) {
return 0;

} else if (n % 10 == 0) {
return 1 + zeroes(n / 10);

} else {
return zeroes( n / 10 );

}

}

Base Cases

Recursive
Cases



 Given an array of integers in (ascending) sorted order, find the 
index of the one you are looking for

 Useful problem with practical applications
 Recursion makes an efficient solution obvious
 Play the High-Low game



 Base cases:
 The number isn’t in the range you are looking at.  Return -1.
 The number in the middle of the range is the one you are looking for.  

Return its index.
 Recursion cases:
 The number in the middle of the range is too low.  Look in the range 

above it.
 The number in middle of the range is too high.  Look in the range 

below it.



public static int search( int[] array,
int n, int start, int end) {
int midpoint = (start + end)/2;
if (start >= end) {

return -1; 
} else if (array[midpoint] == n) {

return midpoint;
} else if (array[midpoint] < n) {

return search( array, n,
midpoint + 1, end );

} else {
return search(array, n, start, 

midpoint);
}

}

Base
Cases

Recursive
Cases



 Each recursive call splits the range in half
 In the worst case, we will have to keep splitting the range in 

half until we have a single number left
 We want to find the number of times that we have to multiply 

n by ½ before we get 1
 n(½)x = 1
 n = 2x

 x = log2(n)





 How does it actually work inside a computer?
 Is there a problem with calling a method inside the same 

method?
 How does the computer keep track of which method is which?



 As you know, a stack is a FILO data structure used to store and 
retrieve items in a particular order

 Just like a stack of blocks:

Push Push Pop



 In the same way, the local variables for each function are 
stored on the stack

 When a function is called, a copy of that function is pushed
onto the stack

 When a function returns, that copy of the function pops off 
the stack

main main

solve

Call

main

solve

factorial

Call

main

solve

Return



 Each copy of factorial has a value of n stored as a local 
variable

 For 6! :

6*factorial(5)

5*factorial(4)

4*factorial(3)

3*factorial(2)

2*factorial(1)

1

x = factorial(6);
factorial(6)

factorial(5)

factorial(4)

factorial(3)

factorial(2)

factorial(1)

720
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24

6

2

1





 Recursion is a great technique
 One of its strengths is in writing concise code to solve a 

problem
 Some recursive solutions are very efficient
 Some are not
 It pays to be aware of both



 Find the sum of the integers 1 through n

 Example: n = 8
 sum(8) = 8 + 7 + 6 + 5 + 4 + 3 + 2 + 1
 sum(8) = 36



 Base case (n = 1):



 Recursive case (n > 1):


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public static int sum( int n ) {

if (n == 1) {
return 1;

} else {
return n + sum( n – 1 );

}

}

Base Case

Recursive
Case



 Recursive summing takes linear time (summing n takes n
function calls)

 Is there another way to find this sum?
 Closed form equation



 Constant time!
 Remember the story of young Gauss
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 The sequence: 1 1 2 3 5 8 13 21 34 55…
 Studied by Leonardo of Pisa to model the growth of rabbit populations



 Find the nth term of the Fibonacci sequence
 Simple approach of summing two previous terms together
 Example: n = 7
 1 1 2 3 5 8 13
1 2 3 4 5 6 7





 More on recursive running time
 Symbol tables



 Read section 3.1
 Keep working on Project 2
 Office hours from 4-5 today are cancelled due to a meeting
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